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Abstract 
 

 A key element in providing physical stimuli in 
flight simulators is the cueing algorithm that produces 
the drive signals used to control the motion system 
hardware.  Two approaches to motion cueing algorithm 
development have been identified from state of the art 
research. The first technique, the “adaptive algorithm”, 
combines first and second order linear washout filters 
with an optimization method to adjust the filter gains in 
real time based upon the error between the simulated 
vehicle and the motion platform responses.  The 
methodology effectively produces a nonlinear filter.  
The second technique, the “optimal algorithm”, uses 
higher order filters that are developed prior to real time 
application using optimal control methods.  The latter 
method incorporates a mathematical model of the 
human vestibular system, constraining the sensation 
error between the simulated vehicle and the motion 
platform dynamics. 
 
 The optimal algorithm, based on simulated aircraft 
angular velocity inputs, was developed and shows 
improvement over using angular acceleration inputs as 
a basis.  A set of cueing filters was generated and 
optimized prior to real time implementation using 
MATLAB software and SIMULINK models.  
Complete models of the human vestibular sensation 
system, i.e. the semicircular canals and otoliths models, 
are incorporated within the algorithm.  An objective 
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comparison of motion platform responses and pilot 
perception responses (as computed from the vestibular 
models employing platform motion as a stimulus) were 
made with responses generated employing both 
algorithms.  Both the optimal and adaptive algorithms 
use a nonlinear gain algorithm that individually scales 
the simulated aircraft inputs, maximizing the motion 
cue within the operational limits of the motion 
platform. 
 
 Results also compared favorably with the 
coordinated adaptive washout algorithm, yielding 
similar results for angular velocity cues while 
eliminating false cues and reducing the tilt rate for 
longitudinal cues.    Proposed future developments by 
the authors in cueing algorithms are revealed. The 
current Visual-Motion Simulator (VMS) at NASA 
Langley Research Center (LaRC), where preliminary 
piloted evaluations of the algorithms are being 
conducted, is described. The new LaRC Cockpit 
Motion Facility (CMF), where the final evaluation of 
the cueing algorithms will be conducted, is also 
described.  
  

Introduction 
 

 While a visual system alone can provide motion 
cues at low frequency, physical motion stimuli are 
necessary to provide higher frequency cues in the range 
sensitive to the vestibular and somatosensory systems.  
The addition of high fidelity motion cues from a 
moving platform in conjunction with visual motion 
cues have been shown to produce a rapid onset of 
vection, or the illusion of motion, thus reducing the 
delay associated with visual motion alone. The research 
literature is rife with results of studies that demonstrate 
significant improvement in pilot performance when 
physical motion cues are provided. This is especially 
true for high gain - closed loop piloting tasks. 
 
 Current motion system hardware appears to be 
capable of generating cues in the frequency range that 
is important to successful cueing. However, the key 
element in providing useful physical stimuli in flight 
simulators is the cueing algorithm, which produces the 
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drive signals used to control the motion system 
hardware. To that end two viable approaches to motion 
cueing algorithm development have been identified 
from research conducted by Wu and Cardullo.1,2 

 
 The first technique is a modification of the 
coordinated adaptive washout algorithm developed by 
Parrish, et al., hereafter referred to as the “adaptive 
algorithm”.3  This algorithm uses both first and second 
order linear washout filters in conjunction with an 
optimization method that adjusts the filter gains in real 
time by minimizing the error between the simulated 
vehicle and the motion platform responses.  This 
methodology effectively produces a set of nonlinear 
washout filters.   

 
 The second technique is the “optimal algorithm” 
based on that which was developed by Sivan, et al.4 and 
later implemented by Reid and Nahon.5 This algorithm 
uses higher order filters that are developed, prior to real 
time application, using optimal control methods.  This 
method incorporates a mathematical model of the 
human vestibular system, constraining the sensation 
error between the simulated aircraft and motion 
platform dynamics. 

 
 In their research Wu and Cardullo1,2 made several 
modifications to the optimal algorithm implemented by 
Reid and Nahon4, resulting in improved performance. 
The center of rotation of the motion platform was 
moved from the pilot’s head to the motion base 
centroid, reducing actuator extension lengths during 
simulation. In the algorithm development additional 
states were added to the cost function to enable more 
flexibility in tuning the algorithm.  A nonlinear gain 
algorithm was developed that scales the aircraft inputs 
by a third-order polynomial, maximizing the motion 
cues while remaining within the operational limits of 
the motion system. 

 
 The question has arisen as to what aircraft and 
simulator control inputs are the most appropriate for the 
optimal algorithm.  The previous developments4,5 
centered on a control input for either the longitudinal or 

lateral mode with linear acceleration and angular 
displacement as control inputs.  Wu2 developed an 
approach using linear acceleration and angular 
acceleration for the longitudinal mode.  This approach 
shows advantages in controlling additional motion 
states that were not available in the original 
development.  In addition, since the semicircular canals 
behave as a transducer for angular velocity input in the 
range of normal head movements,6 an approach using 
angular velocity as input may also be desired. 

 
 In this paper an optimal algorithm based on 
simulated aircraft angular velocity inputs is discussed. 
Models of the human vestibular system, i.e. the 
semicircular canals and otoliths, are incorporated within 
the algorithm in order to constrain vestibular sensation 
errors.  A set of cueing filters is optimized and 
generated prior to real time implementation.  
  
 Motion platform responses generated by this 
revised optimal algorithm are compared with responses 
from the optimal algorithm based on angular 
acceleration input.  An objective comparison of motion 
platform responses and pilot sensation responses (as 
computed from the vestibular models employing 
platform motion as a stimulus) was made with 
responses generated from the adaptive algorithm.  The 
algorithms were then tested on the NASA Langley 
Visual Motion Simulator in a series of piloted test 
maneuvers. 

Visual Motion Simulator 
 
 The Visual Motion Simulator (VMS), shown 
in Figure 1, is a general-purpose simulator consisting of 
a two-crewmember cockpit mounted on a 60-inch 
stroke six-degree-of-freedom synergistic motion base7,8.  
Motion cues are provided in the simulator by the 
relative extension or retraction of the six hydraulic 
actuators of the motion base. Both the adaptive and 
optimal algorithms were used to drive the motion base 
during this study. 
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Figure 1. Visual Motion Simulator (VMS). 
 
 The cockpit of the VMS, shown in Figure 2, is 
designed to accommodate a generic transport aircraft 
configuration on the left side and a generic fighter or 
rotorcraft configuration on the right side.  Both sides of 
the cockpit are outfitted with three heads-down CRT 
displays (primary flight display, navigation/map 
display, and engine display), a number of small 
standard electromechanical circular instruments and a 
control display unit mounted in the center.  The left side 
contains a two-axis side stick control loader, and the 
right side contains a two-axis center stick.  Both sides 
contain control loaded rudder systems.  A center aisle 
stand with throttle quadrant is also available.  The 
cockpit is outfitted with four collimated window 
display systems to provide an out-the-window visual 
scene which is driven by an Evans and Sutherland 
ESIG 3000/GT computer generated image system.  The 
left side of the cockpit was used during the cueing 
algorithm evaluation study. 

 
Figure 2.  Visual Motion Simulator Cockpit. 
 
 The simulator includes a nonlinear mathematical 
model of a Boeing 737-100 aircraft, complete with 
landing gear dynamics, gust and wind models, radio 

navigation system models, and instrument and 
microwave landing system models.9 
 

Algorithm Development 

 In developing an optimal washout filter, the 
problem is to determine a matrix of linear transfer 
functions W(s) that relates the simulator motion input 
to the aircraft motion input so that a cost function 
constraining both the sensation error between the 
aircraft and simulator pilot is minimized.  The structure 
of the problem is illustrated in Figure 3. 
 

 
Figure 3.  Aircraft Simulation Problem Structure. 
 
 A mathematical model of the human vestibular 
system is used in the filter development.  The optimal 
algorithm described below generates the optimized 
transfer functions W(s) by an off-line MATLAB  and 
SIMULINK  setup.  W(s) is then implemented on-line.  
W(s) will relate the simulator motion input to the 
aircraft motion input by us = W(s) ×××× ua.  The simulator 
states us are then used to generate the desired motion 
base commands. 
 
 The filters for four modes: longitudinal 
(pitch/surge), lateral (roll/sway), yaw, and heave are 
designed separately in the optimal algorithm 
development.  The algorithm development with angular 
velocity input for the longitudinal mode is given below.  

                                                           
  MATLAB and SIMULINK are registered trademarks 
of the Mathworks, Inc., 24 Prime Park Way, Natick, 
MA 01760. 
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The control input u is formulated as 
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The sensed rotational motion (pitch) is then related to 
the input u1 by the semicircular canals model5,10 
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Note that the short time constant τ2, equal to 0.005 
seconds,11 must be included in the model, otherwise the 
system equation becomes non-realizable. τ2 was 
neglected by Wu2 in the optimal algorithm formulation 
based on angular acceleration input. Eqn. (2) can be 
rewritten as 
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and can be defined in state space notation as 
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where in canonical observer form 
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The sensed specific force (in the longitudinal axis) is 
now related to the aircraft specific force fx by the otolith 
model5,11,12 
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For the center of rotation at the centroid of the motion 
platform, the specific force is 
 

 
Szxxf a g Rθ θ= + + &&  (6) 

 
where RSz is the radius from the motion platform 
centroid to the pilot’s head.  In terms of the control 
inputs u1 and u2, Eqn. (6) can be transformed into the 
Laplace domain 
 

 ( ) ( ) ( ) ( )2 1

1
x Szs s sg s

s
f u R u= + −   (7) 

 
Substituting Eqn. (7) into Eqn. (5) and rearranging 
results in 
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 Note that in Eqn. (8) the system equation becomes 
realizable with the inclusion of the otolith break 
frequency B1, which was neglected by both Reid and 
Nahon4 and Wu2 in their respective optimal algorithm 
formulations. Rearranging Eqn. (8) and taking 
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derivatives on both sides results in the differential 
equation 
 

( )
{ ( ) ( )

}

0 1 0 1

2 0 1 0 1 0 1 1

0 1 2 0 2

ˆ ˆ ˆ
x x x

o Sz Sz

f B B f B B f

G R B B A u g R B B u

gA u dt u A u

+ + + =

× + − + +

+ + +∫

&& &

&

&

 

 (9) 
 
which can be rewritten as 
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and can then be defined in state space notation as 
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 The derivatives of the control input u are absorbed 
into the state space representation in Eqn. (11) by a 
method given in Brogan.13  The state space 
representations in Eqns. (4) and (11) are then combined 
to form a single representation for the human motion 
sensation model: 
 

  
1ŷ
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 It is assumed that the same sensation model can be 
applied to both the pilot in the aircraft and the pilot in 
the simulator as shown in Figure 1.  We then define the 
state error xe = xs - xa and the pilot sensation error e, 
resulting in 
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 It is also necessary for the control algorithm to 
explicitly access motion states such as the linear 
velocity and displacement of the simulator, which are 
desired to appear in the cost function.  For this purpose 
additional terms are included in the state equations 
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where 
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 Input u consists of filtered white noise w, and can 
be expressed in state space as 
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where 

 
 The state equations given in Eqns. (13), (14), and 
(15) can be combined to form the desired system 
equation 
  

  

[ ]

[ ]

e d nx x x=

= + +

= = +

T

s

T

d s

x

x Ax Bu Hw

y e x Cx Du

&  (16) 

 
where 
 

 ,=

   
   
   
   

V V V

d d

n

, B =

A 0 -B B

A 0 A 0 B

0 0 A 0

 

 

[ ]

 
   
    

 

V V

n

V

= , = ,

=

0
C 0 -D

C H 0
0 I 0

B

D D 0

 

 
 
 
with the cost function 
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where E is the average or expected value. Eqn. (17) 
implies that three variables are to be constrained in the 
cost function: the sensation error e along with the 
additional terms xd and us which together define the 
linear and angular motion of the platform. 
 
 The system equation of Eqn. (16) and the cost 
function of Eqn. (17) can be transformed to the standard 
optimal control form14 by the following equations: 
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The cost function of Eqn. (18) is minimized when 
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and defining the optimal feedback gain matrix F, 
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F can then be partitioned corresponding to the partition 
of x in Eqn. (16): 
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Remove the states corresponding to the xn partition 
from Eqn. (16): 
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After taking the Laplace transform of Eqns. (23) and 
(24), the following equations are obtained: 
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 The optimal filter matrix W(s) is computed using a 
set of MATLAB scripts.  The weighting matrices Q, R, 
and Rd given in the cost function of Eqn. (17) are 
selected and adjusted to produce the desired platform 
responses.  From these weights and the vestibular 
models the standard optimal control matrices of Eqn. 
(18) are computed.  The algebraic Riccati equation of 
Eqn. (20) is solved with the MATLAB function “care”.  

The solution for W(s) in Eqn. (25) is then computed.  
Common poles and zeroes are cancelled in each transfer 
function, yielding a set of seventh-order filters for the 
longitudinal mode.  These filters are then used in a 
SIMULINK model that generates the linear acceleration 
and angular velocity responses. 
 

Algorithm Evaluation 
 
 Comparisons of longitudinal responses are made 
between the optimal algorithm with angular velocity 
input and the optimal algorithm with angular 
acceleration input proposed by Wu2.  Both algorithms 
incorporate the vestibular models described in the 
previous section and employ identical polynomial 
coefficients for scaling the aircraft input.  The cost 
function weights are kept the same for both algorithms 
and tuned to produce optimum responses for both pitch 
and surge inputs.  The translational break frequency as 
given in Eqn. (15) was increased from 1 rad/s to 4π 
rad/s in both algorithms to minimize an onset false cue 
for responses to a surge step input. 
 
 Figure 4 compares specific force responses in the 
x-axis (positive sense forward) for an aircraft surge 
ramp to step input of 1 m/s2 magnitude and 3 m/s2/s 
slope.  Note that the responses are nearly identical with 
no onset false cue.  Figure 5 compares responses to a 
pitch acceleration doublet input of 0.05 rad/s2 
magnitude for a 5-second duration.  Note that for the 
angular acceleration algorithm the pulse doublet is 
directly input to the rotational filter W11, producing a 
discontinuity at the doublet transition points.  For the 
angular acceleration the pulse doublet is first integrated 
to a smooth triangular angular velocity which is then 
input to the filter W11. 
 
 Objective comparison of responses to calibrated 
aircraft inputs for the optimal algorithm with angular 
velocity input are made with the adaptive algorithm.  
For both algorithms a time step of 0.025 seconds (an 
update rate of 40 Hz) was chosen to match the NASA 
Boeing 737-100 simulation.  Polynomial scaling 
coefficients for each algorithm are tuned separately to 
optimize performance for the actuator stroke limits of 
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the VMS.  Comparisons are made of both specific force 
at the pilot’s head and platform angular velocity, as 
well as vestibular responses. 
 
 
 
  
 
 
 
 
 
 
 
 
 
Figure 4.  Comparison of Optimal Algorithm 
Responses to Aircraft Surge Input. 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
Figure 5.  Comparison of Optimal Algorithm 
Responses to Aircraft Pitch Input. 
 
 The specific force responses to a ramp to step surge 
input of magnitude 1 m/s2 and slope 3 m/s2/s are shown 
in Figure 6. The adaptive algorithm produces a 
significant false cue (-0.5 m/s2) at onset, after which the 
peak is followed by a “sag” (decrease followed by 
increase) for about 5 seconds until a steady magnitude 
is reached.  The optimal algorithm produces no false 
cue with a smooth ramp at onset followed by a smaller 
peak magnitude and faster washout.  The sensed 
specific force responses show the simulator pilot 

response from the optimal algorithm, while reduced in 
magnitude, closely tracks the shape of the perceived 
response of the aircraft pilot.   The adaptive algorithm 
does not track the shape of the aircraft pilot sensed 
response as well, especially for the duration where the 
sag occurred. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.  Comparison of Adaptive and Optimal 
Algorithm Responses to Aircraft Surge Input. 
 
 Angular velocity (pitch) responses due to tilt 
coordination generated by the surge cue are shown in 
Figure 7.   The responses show a lower peak velocity at 
onset for the optimal algorithm by about 1 deg/s but 
followed by a negative peak of about 1 deg/s before the 
platform settles to zero velocity.  The adaptive 
algorithm settles to zero velocity with no negative peak. 
 
 
   
 
 
 
 
 
 
 
  
 
   
 
Figure 7.  Platform Tilt Coordination Responses to 
Aircraft Surge Input. 
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9

 
 Figure 8 shows the angular velocity responses to a 
pitch acceleration doublet input of 0.05 rad/s2 
magnitude for a 5-second duration.  The algorithm 
responses are nearly identical; each response is a 
proportionately reduced magnitude of the aircraft 
angular velocity input.  Figure 9 shows the specific 
force response in the z-axis (positive sense down) due 
to the pitch cue.  Note that the response for the optimal 
algorithm is smaller in magnitude (and closer to the 
aircraft response) as compared to the adaptive 
algorithm response; this is consistent with the slightly 
larger pitch cue shown in Figure 7.  
 
  
 
 
 
 
 
 
 
 
 
 
  
  
Figure 8.  Comparison of Adaptive and Optimal 
Algorithm Responses to Aircraft Pitch Input. 
 
   
 
 
 
 
 
 
 
 
 
 

 
 
Figure 9.  Z-axis Specific Force Responses to Aircraft 
Pitch Input. 

 
Future Developments 

 
 A novel approach to motion cueing, currently 
being researched by the authors, is to develop a motion 
cueing algorithm that combines features of both the 
adaptive and optimal algorithms.  The algorithm would 
be formulated as an optimal control problem with a 
nonlinear control law that would result in a set of 
adaptive cueing filters.  These cueing filters can then be 
adjusted in real time based upon the system states; in 
particular those associated with perceptual errors.  The 
control law will require the matrix Riccati equation to 
be solved in real time.  A highly favorable approach to 
this computationally challenging problem is a recurrent 
neural network proposed by Wang and Wu15.   The 
proposed algorithm will also incorporate a new otoliths 
model and a model of visual motion perception. 
 
 The current otoliths model given in Eqn. (5) is 
based upon subjective responses of test subjects.  From 
physiological experiments, Fernandez and Goldberg 
developed the following transfer function for the 
otoliths:16 
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where AFR is the afferent firing rate of the vestibular 
neuron. Note that the numerator in Eqn. (26) contains a 
fractional derivative term that poses an interesting 
problem when implementing in state space notation in 
the optimal algorithm. 
 
 Young17 noted that visual motion cues are 
dominant in the perception of velocity and steady state 
orientation at low frequencies below 0.1 Hz. At higher 
frequencies, vestibular cues tend to dominate. When 
visual and vestibular cues conflict, in particular with the 
direction of motion, vestibular cues will initially 
dominate. Motion perception can be sustained by visual 
cues after vestibular cues have been washed out due to 
motion platform limits. Visual cues introduce a bias to 
the perceived angular velocity in the presence of 
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platform motion. Zacharias18 developed functional 
models of how visual and vestibular cues operate in 
conjunction to produce human motion perception. 
 
 The current adaptive and optimal algorithms along 
with the new algorithm will be implemented and 
evaluated on a new motion system in the Cockpit 
Motion Facility (CMF).  The CMF, as shown in Figure 
12, is made up of one motion system site and four 
fixed-base sites. The motion system site contains a six-
degree-of-freedom state-of-the-art synergistic motion 
base with 76-inch extension actuators.  The four fixed-
base sites provide homes for the simulator cockpits 
when they are not resident on the motion system.  Each 
cockpit has its own visual display system and all 
cockpits share Evans and Sutherland ESIG 3000 or 
Harmony image generators. 

 
Figure 12. Cockpit Motion Facility (CMF). 
 
 The effectiveness of the proposed algorithm as 
compared to the current adaptive and optimal 
algorithms will be assessed in piloted simulations on 
the CMF.  A series of aircraft maneuvers will be 
executed for each algorithm.  Pilot perception (as 
computed from vestibular and visual motion models 
employing platform motion as a stimulus) and pilot 
control input will be recorded for each maneuver.  From 
pilot control inputs, power spectral density, crossover 
frequency, and phase angle will be analyzed to 
determine the effect of motion platform response upon 
pilot performance. From these data, the fidelity of each 

algorithm will be benchmarked in replicating pilot 
performance and workload of actual aircraft maneuvers. 
 

Conclusions 
 

 Further investigation of the optimal algorithm 
revealed that a revised development based upon angular 
velocity input is an improvement over the former 
approach based upon angular acceleration input.  
Comparisons of the angular velocity response show that 
distortion is eliminated with the angular velocity 
approach, with a cueing response very close to that of 
the adaptive algorithm. Cueing responses to a surge 
input show the optimal algorithm has improved 
tracking capability without a false cue and lower tilt 
rate at onset, but producing a lower magnitude response 
than the adaptive algorithm. 
 
 This revised approach to the optimal algorithm will 
be used in the future development of an optimal 
algorithm that will be capable of adapting to platform 
motion and sensation errors in real time.  This new 
technique will include new features not available in the 
current algorithms, a revised otolith model and a visual 
motion perception model.  The new algorithm will be 
tested and implemented on the CMF motion platform 
currently being installed at the NASA Langley 
Research Center.  Both the new motion cueing 
algorithm and the new motion platform facility will be 
instrumental in future motion studies research. 
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